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SECTION 1

INTRODUCTION

Military aircraft control system actuators are high performance components of the
flight control system required to quickly and precisely position the control surfaces with a
sufficiently damped transient response. In addition, actuators on some control surfaces are
flight critical, requiring high reliability which cannot be achieved in a cost effective manner
using an actuator with no redundancy. Therefore, redundancy is used to give the actuators
a fault tolerant capability (i.e. the capability of accommodating one or more failures). For
fault-tolerant actuators, the real-time fault diagnosis and failure management systems must
be able to accommodate failures quickly, allowing only small transients. The performance
and fault tolerance requirements result in a complex system which requires frequent
maintenance and which is difficult to test and repair. As a result, according to one study of
the F-16 flight control system (FCS) reported in Reference 1, actuators are second only to
sensors of F-16 FCS components in number of failures and the maintenance required.

Some possible approaches to improving the reliability and maintainability of
actuators, as well as reducing the frequency of maintenance required, are to improve the
reliability of the components, replace components by more reliable alternatives, anc
redesign the architecture to make it simpler. These approaches are currently being
examined in the technical community. One area that has not been investigated is improving
the fault diagnosis and failure management on actuators. Existing military aircraft control
system actuators, for the most part, have a very basic capability which results in a high
false alarm rate. A study of the maintenance of F-18 horizontal stabilator actuators
(Reference 2) found that the second leading cause of maintenance actions (excluding
maintenance for reasons other than actuator defects or failures) was for "failed to operate
for unknown reasons," requiring 20% of the maintenance actions and 28% of the man-
hours. Similarly, "failures which could not be duplicated" accounted for 13% of the
maintenance actions required for an F-14 spoiler actuator according to a maintenance study
described in Reference 3.

Significantly reducing the false alarms produced by the fault diagnostic system on
aircraft control system actuators would improve their maintainability and reliability. To
reduce false alarms while continuing to accommodate failures quickly with little noticeable
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transient requires greater sophistication in the fault diagnosis and failure management
system. The application of artificial intelligence technology is one approach which may
have significant potential in this regard. The effort documented in this report investigates
this approach, in conjunction with existing and algorithmic strategies, to aircraft flight
control system actuator fault diagnosis and failure management. This study was sponsored
by NASA Ames Research Center under contract NAS2-12404 entitled "Intelligent Fault
Diagnosis and Failure Management of Flight Control Actuation Systems.” The specific
goals of this contract were twofold:

¢ To assess the applicability of artificial intelligence methods and techniques to
aircraft flight control system actuator real-time fault diagnosis and failure
management.

¢ To make recommendations for a fault diagnosis and failure management system
based on the investigation of artificial intelligence technology in conjunction with
existing approaches.

Implicit in considering the use of artificial intelligence as well as algorithmic methods of
failure diagnosis and failure management is the availability of digital processing capability.
Some of the more recent actuators use the flight control computer for implementing the fault
diagnosis and failure management systems. Placing dedicated microprocessors on future
actuators is also presently being investigated.

A brief general review of fault diagnosis and failure management is presented in
Section 2. This section provides background for examining the fault diagnosis and failure
management systems of aircraft actuators and for assessing artificial intelligence approaches
to fault diagnosis. Section 3 examines the fault diagnosis and failure management systems
of current operational and experimental dual tandem actuators. Dual tandem actuators were
considered in this study because they require significant active fault diagnosis and failure
management capability. The results of this investigation will still apply, to a lesser extent,
to other actuators. The applicability of artificial intelligence technology for actuator fault
diagnosis and failure management is assessed in Section 4. Section 5 presents
recommendations for improving the fault diagnosis and failure management capability and
the maintainability of dual tandem actuators. Finally, the report is summarized and the
major conclusions presented in Section 6.



SECTION 2

FAULT DIAGNOSIS AND FAILURE MANAGEMENT BACKGROUND

Fault diagnosis is the process of determining if a failure has occurred and, if so,
what component or subsystem has failed. This information is transmitted to the failure
management system which determines how to respond appropriately to the failure. The
three distinct yet interrelated tasks that make up fault diagnosis and failure management are
frequently referred to as failure detection, fault isolation, and system recovery and
reconfiguration. In this section, each of these tasks is discussed in a general manner,
providing a basis for discussing fault diagnosis and failure management in the context of
aircraft actuators for the remainder of the report.

2.1 Failure Detection

Failure detection is the operation of distinguishing between the normal and the
abnormal (i.e. failed) behavior of a system. The detection process consists of a continuous
cycle of monitoring (measurement), information processing, and comparison testing. In
general, a failure is detected by monitoring the behavior of a component, subsystem, or
system of interest, converting the raw data into a useful form (if necessary), and, finally,
by comparing the resultant behavior with a reference model of expected behavior. The
outcome of the comparison test is usually a binary decision, i.e. "ok" or "failed.”

The performance of the failure detection system, therefore, is dependent on
information about the system's behavior from the sensors, any knowledge necessary to
process this information, and the comparison test. The first two required elements depend
on the specific system and the failure detection and isolation approach or approaches
chosen, and thus are difficult to discuss in a general manner. With regard to sensors,
though, they must provide sufficient information such that any failure that will
unacceptably degrade the system operation can be detected. Also note that while sensors
are necessary for fault diagnosis and failure management, they also add another source of
failures which must also be managed properly to avoid increasing the failure rate of the
overall system.



However, general methods of comparison testing for failure detection do exist. A
comparison test for failure detection consists of a reference model for comparison with the
actual system's behavior and a decision rule to distinguish between failed and normal
behavior. The reference model of expected behavior can either be a model of the normal
behavior of the system or a model of the failed behavior of the system. In the first case,
failures are detected by checking for discrepancies between observed behavior and a
reference model of the normal behavior. In the second case, failures are detected by
checking for consistencies between observed behavior and a reference model of failed
behavior. A decision rule is required since the actual behavior will not exactly match the
reference behavior due to uncertainty present in the form of sensor and environmental noise
and modeling errors between the reference model and the actual system behavior.

The reference models can take on many forms. When modeling the normal
behavior, the reference model can be implemented in hardware or in software. In the case
of a hardware reference model, one or more duplicates of a component, subsystem, or
system of interest are used as a reference model (see Figure 2.1). In fact, each of the
hardware redundant components or subsystems is a reference model for other
component(s) or subsystem(s). A failure is detected by comparing the outputs of the
redundant components or subsystems (where the decision logic may be implemented in
either hardware or software). Note that this approach ignores simultanecous random
failures. The detrimental effects of such failures are generally of second order. Common
mode failure possibilities (i.e. single point failures that affect redundant elements) must be
eliminated during the system design by employing fault-tolerant design techniques. Using
redundant hardware components or subsystems to detect failures is referred to as direct
redundancy.

In the case of software implemented reference models, the most common models
are analytic, quantitative functional relationships or system models. Using these models
and alternative information from the system other than a direct measurement of the
component or system output, a reference for the component or system is synthesized (see
Figure 2.2). However, heuristic and qualitative models may also be used. The accuracy of
the software reference models can vary from approximate to high fidelity, depending on the
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Figure 2.1. Hardware reference model.
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Figure 2.2. Software reference model.

ability to model the specific system and the performance requirements of the failure
detection system. Using software reference models is often called analytic redundancy.

The benefit of direct redundancy is that failure detection is straightforward,
requiring only a simple comparison of the outputs. Also, assuming that the redundant
components have similar performance, the resulting failure detection performance will be
excellent. The advantage of analytic redundancy is that less redundant hardware is
required, thus reducing the acquisition cost, reducing the mean time between system
failures and improving system maintainability. (Computational resources required for
analytic redundancy are assumed here to cost less, to be more reliable, and to be easier to
maintain than the hardware eliminated by using analytic redundancy).

In the case of modeling the failed behavior of a system, modeling all possible
behaviors produced by failures is very difficult since components can normally fail in many
ways. In addition, the failed behavior that results may also be a function of the time at
which the failure occurs. As a result, the reference models describing the failed behavior
tend to be very approximate. Two examples are range and trend checking. Rang,
checking declares a failure whenever an output exceeds a conservative estimate of the
operating range for that variable. Trend checking declares a failure when there is an abrupt
change that is not normally physically possible. (In a sense, these two approaches could
also be considered analytic redundancy). An alternative approach is to check for
characteristic failure modes of components or subsystems, usually using sensors directly
on those components or subsystems. The disadvantage of this approach is that it is not
capable of detecting failure modes that have not been defined a priori. Because of the
difficulty in modeling the failed behavior of a system, achieving excellent detection
performance is more difficult than when using a reference model of the normal behavior.
Nevertheless, there are systems and situations where modeling the failed behavior produces
acceptable detection performance. Note that direct redundancy is not possible in this case;
the reference model must be implemented in software or analog logic.

The choice of reference model depends on a number of factors which are system
dependent. Some of these factors are the cost and reliability of hardware, ease of



accurately modeling the system, computational resources, and the cost in engineering time
to design the system. The most important factor is detection performance required. Errors
in the reference model will result in incorrect decisions about the health of the system (see
Figures 2.3 and 2.4). If the model of normal behavior inadequately describes all possible
normal behaviors of the system, a failure will be disclosed when none exists. This is
referred to as a false alarm. A failure is missed when the model of normal behavior models
the behavior of the system with that failure. When the failed behavior is being modeled, a
false alarm results when the abnormal model actually models the normal or unfailed
behavior of the system. A missed failure occurs when the abnormal model inadequately
models the behaviors resulting from some of the failures.

If a false alarm causes the failure management system to remove the presumed
faulty but actually unfailed component, the system performance and reliability is reduced
unnecessarily. In addition, the maintenance required would increase in the case of aircraft
actuators as the actuator would have to be examined for a failure before a new mission
could be flown. If, however, a component failure is not recognized as a failure (i.e., a
missed failure), the system performance also degrades, perhaps resulting in the system
being unable to function.

Given a reference model of expected behavior to perform the comparison, a
decision rule is required to distinguish between normal and failed behavior of the system
when uncertainty is present. The effect of modeling errors was discussed above. External
environmental uncertainty (e.g., change in the loading on the actuator due to turbulence or
irregular airflow) can also be considered to be model uncertainty. The effect of sensor
noise is to degrade the accuracy with which the actual system behavior can be measured.
Even if the normal or failed behavior of the system was modeled perfectly, sensor noise
would cause decision errors as the measurement of the system behavior differs from the
actual system behavior. This is pictured graphically in Figure 2.5 as a gray area between
the normal and failed system behaviors.

The most common decision rule is a detection threshold on the difference between
the actual and reference behaviors or some transformation of this difference. Other more
sophisticated decision rules use additional information processing before comparing to a
detection threshold. In any case, the effect of decision thresholds is to enlarge the modeled
regions in Figure 2.6 to account for model, environmental, and measurement uncertainty.
For example, if the comparison test is dependent on information from a very noisy sensor,
the threshold could be increased to reduce false alarms. Similarly, if there is an
environment or situation where the model does not accurately represent the system
behavior, the thresholds can be increased to reduce the false alarms. The disadvantage of
increasing the detection thresholds is that some types of failures and smaller magnitude
failures may no longer be detected. In selecting thresholds, there exists a basic tradeoff
between false alarm rate and the type and magnitude of failure that can be detected.
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Figure 2.3. The effect of reference modeling error on failure detection decisions when
modeling the normal behavior.
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However, the thresholds do not have to be constant as suggested in Figure 2.6. One
frequently used technique when thresholds must be increased because of modeling or
environmental uncertainty is to use dynamic thresholds based on the state of the system or
the environment. This technique allows better detection of failures when the uncertainty is
small. Clearly, the selection of detection thresholds is a major concern in any diagnostic
system design.

2.2 Fault Isolation

The process of determining the failed component or subsystem responsible for
abnormal behavior, after a failure has been detected, is called fault isolation. The specific
information about which component or subsystem has failed is provided to the failure
management task so that the effect of the failure on the system may be contained or
negated. Therefore, isolation is only needed to the level required by the failure
management system. For example, if there is redundancy at a subsystem level, isolating to
the component level in the subsystem would be unnecessary for failure management
purposes. Isolating to the component level may possibly be useful for subsequent
maintenance purposes if no significant increase in system resources (mainly sensors and
computational capability) is necessary.

To perform isolation, the sensors must provide sufficient information such that
failures of the individual components and subsystems can be differentiated. Note that more
information is usually required than in the case of detection. This requirement for sensor
information includes that required to differentiate failures of the sensors that provide the
information for fault diagnosis from the components themselves. For example, adding a
sensor to a component for fault diagnosis, without any additional information available
about the operation of the component or sensor, does not provide sufficient information to
isolate the failure to the component or sensor; the failure can only be isolated to the
component-sensor subsystem. The disadvantage of not being able to differentiate between
the sensor and the component is that the reliability of the component-sensor subsystem is
less than the component alone.

Isolation also requires knowledge of how the components or subsystems are
interconnected and influence each other and, in turn, affect the system behavior. Other
related knowledge such as the physical locations of the components and subsystems may
also be useful. This knowledge about the functional and physical organization (Reference
4) is needed to transform the behavioral information from the sensors into information
about possible failed components and subsystems in the overall system. It may be used
either explicitly in the transformation process or be implicit in the design of the isolation
system. Finally, with uncertainty present (as discussed in connection with detection),
some decision logic is required to differentiate between the possible choices of components
and subsystems.
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In general, there are three possible outcomes of the decision logic: (1) correct
isolation of the failed component or subsystem, (2) incorrect isolation, and, (3) no
decision, which indicates that the failure cannot be isolated. Correct isolation is clearly the
desired response. Incorrect isolation is a serious error since it has the effects of both a false
alarm (a good component or subsystem will be eliminated from use) and a missed detection
(the actual failure will not be countered) occurring simultaneously. No decision is likely
for at least a short time following failure detection while the failure is being isolated.
However, never isolating the failure is like a missed detection of a failure unless the failure
management is able respond, in at least a limited sense, without explicit isolation.

The various approaches to fault isolation can be loosely grouped into three
categories: local isolation, arbitration, and generate and test. The characteristics of the
approaches in each of these categories are now discussed.

2.2.1 Local Isolation

In this category, a failure of a component or subsystem is isolated at the same time a
failure is detected. The basic approach is to disaggregate (i.e. break up) the system or part
of the system into the components and subsystems at the desired level of isolation. Then,
failure detection is performed on each individual component and subsystem as described in
the detection section. The failure is isolated when a failure is detected. The important
assumption is that failures are detected before their effects propagate and cause alarms in
other detection tests. If this assumption is not true, reasoning is then required to determine
which component or subsystem really failed. As more sophisticated reasoning is required,
this approach may more naturally be categorized under generate and test algorithms.
References 5-7 have formalized this approach to failure detection and isolation.

Local isolation relies on sensors directly monitoring the particular component or
subsystem of interest. (Isolating a failure without direct measurement, i.e. indirect
isolation, requires other more powerful techniques discussed in the generate and test
subsection.) In addition, sensors on the inputs to a component or subsystem may also be
necessary. Any sensor information which is needed for these approaches must be validated
(using other detection and isolation approaches) or the sensor or sensors become basically
grouped with the component or subsystem for the purpose of isolation. In this instance, a
sensor failure may be interpreted as a component or subsystem failure. One exception to
these comments is detecting sensor failures based solely on their output, e.g., out of range
conditions or other common failure modes.

2.2.2 Arbitration

The arbitration approach to isolation, as with failure detection, involves the use of
comparison. However, the comparison of only two information sources, which is
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sufficient for failure detection, is inadequate if either source of information is subject to
failure. Arbitration uses more than two sources of information to isolate the failure via
some form of majority logic.

The comparisons used in arbitration can either be direct comparisons of information
on the same physical or computation parameter or can be indirect comparisons of
information on a number of physical parameters that are functionally related. The direct
comparison most frequently used is direct redundancy (i.e., information from similar
redundant components or subsystems) since each of the redundant components or
subsystems is subject to failure. The majority logic in this case could be simply threshold
tests applied by pairing the components to ascertain which, if any, are too far away from
the majority.

Direct comparison can also use redundant information representing the same
physical parameter, but emanating from dissimilar sources. The comparisons may be done
directly on the measurements, or the data may be weighted towards what is considered to
be a more reliable or less noisy source. In some cases, the data from some of the sources
may not be a direct measurement of the parameter in question, but rather a synthesis of that
parameter based upon other measurements in the system and a model of the system or the
physics of the problem (i.e., a form of analytic redundancy).

Note that arbitration may not be necessary when the comparison testing is done
using analytic redundancy, as analytic redundancy is generally designed to be sufficiently
reliable and can be assumed to be correct. However, both direct and analytic redundancy
are sometimes used together in isolating failures. An example is the F-8 program where
analytic redundancy provided the third source of independent information.

Indirect comparison uses analytic techniques (i.e., another form of analytic
redundancy) to compare redundant information representing different, but physically
related quantities of the same type that emanate from independent sources. These
relationships can be the result of either the physics of the problem or an artificial
relationship created using closed loop control techniques. Position and rate measurements
fall into the former class. An example of the latter case is force balancing in a scheme
where more than three hydraulic actuators are used to support a load at independent points.
Because of the functional relationships that exist, more information is available than there
are degrees of freedom. This redundant information may be used for isolation.

Arbitration schemes are most efficient when used with sensors, as the outputs are
simply compared and isolated in an appropriate manner. When isolating other components
or subsystems using arbitration, the sensed information of that isJ used to isolate the failure
must be separately validated. For example, if individual sensors are being used to compare
three redundant components, at least two redundant sensors would be required on each
component. With only one sensor on each component, a sensor failure cannot be
differentiated from a component failure. Two sensors are sufficient to differentiate between

12



a sensor and component failure. A sensor failure might be isolated with only two sensors
by assuming the component it is measuring did not fail at the same time and if one of the
sensors agrees with sensors on the other components.

2.2.3 Generate and Test

Most other approaches to isolation can be considered to be some form of the
generate and test paradigm. This paradigm, in the context of fault isolation, can be
described procedurally as follows:

(1) Generate a new fault candidate (generally a component or subsystem).

(2) Attempt to verify the hypothesis by testing its ability to explain the observed
faulty behavior of the system. A model is required to predict (via simulation)
the system behavior resulting from the assumed faulty component.

(3) If the current hypothesis is valid, then go to step (4); otherwise loop back to
step (1).
(4) Present the current hypothesis as the isolated fault.

The algorithm terminates when the failed behavior predicted by simulation matches (to a
reasonable degree) the observed faulty behavior of the system. The hypothesis used for
simulation is then declared to be the faulty component responsible for the observed
behavior of the system. An alternative procedure is to generate all candidate hypotheses
before testing any of them. In this case, the hypothesis that most closely matches the
observed behavior is chosen.

The generate and test approach to fault isolation can be interpreted as shown in
Figure 2.7. The candidate generation process involves a transformation from a behavioral
description of the failure (the symptoms) to a structural one (the faulty components). The
verification (i.e., test) process (fault simulation) is exactly the inverse of the original
transformation. Note that each of these procedures relies on knowledge of the system
model (i.e., its structure, organization, and behavior).

Conceptually, this procedure employs two basic modules referred to as the generator and
the tester (Reference 8). The solution algorithms differ with respect to these modules. The
overall efficiency of the algorithm (as measured by the number of iterations or time required
to arrive at a solution) depends critically upon the efficiency of the generator and the tester.
The power of a specific generate and test procedure to provide correct answers results from
its ability to generate accurate hypotheses and to discriminate effectively among competing
hypotheses.

13
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Figure 2.7. Generate and test approach to fault isolation.

2.2.3.1  Candidate Generation

To guarantee that a generator will produce the correct solution to the fault isolation
problem, the generator must be complete, i.e., able to produce all possible hypotheses. A
necessary condition for completeness requires that the set of all possible solutions be
enumerable and finite. If there are possible solutions which cannot be produced by the
generator or if there are an infinite number of possibilities, then the generator is said to be
incomplete. An incomplete generator may or may not produce a correct hypothesis.

The effectiveness and efficiency of the candidate generation process may be
improved through guidance. The simplest form of guidance restricts candidate generation
so that the same hypothesis is never proposed more than once. Generators with this
property are said to be nonredundant. In some situations, no further guidance is possible
and the optimum generator is nonredundant, but otherwise arbitrary in its selection of
candidates. Under these conditions, the algorithm is referred to as exhaustive search.

For a problem having a single solution among a complete set of N possible solution
candidates, exhaustive search will arrive at the correct solution in N/2 iterations, on
average. For many important problems however, the quantity N is characterized by

14



exponential growth relative to linear changes in the problem size. Although exhaustive
search is simple and straightforward, it is a "blind" method of candidate generation and, as
such, is not generally amenable to complex problems.

Useful information normally exists which can be exploited to substantially reduce
the number of iterations required (on average) to arrive at a solution. Knowledge about the
problem domain in combination with information returned from the tester (the error
estimate or error signal) may be used for this purpose. Generally speaking, the more that is
known a priori about the problem domain and the more sophisticated the runtime
verification process and associated error signal are, the better the candidate generator will
be. In effect, a priori and runtime information serve to limit the number of candidate
hypotheses that must be considered.

Candidate hypotheses are removed from consideration in two different ways.
Candidates may be eliminated from consideration permanently, based on the evidence at
hand. Alternatively, candidates may be temporarily removed from consideration as a
consequence of prioritizing the remaining possibilities. Prioritization schemes organize
remaining candidates so that those hypotheses which are most likely to succeed are tested
first. Prioritization schemes may be heuristic in nature, or optimal with respect to the
current state of the solution process.

While candidate generation can be done in real-time, in most present diagnostic
systems, a set of possible fault candidates are enumerated a priori, eliminating the need for
real-time candidate generation. This is normally done because the total number of
reasonable fault candidates which must be considered is small in number. This is true for
even large systems where the fault diagnosis capability is broken down by subsystems.
There are, however, a number of recent systems which do generate the candidate
hypotheses in real-time. These systems are a result of attempting to incorporate some
artificial intelligence technology into the diagnostic process and therefore will be discusszA
further in Section 4.

2.2.3.2  Hypothesis Testing

The function of the tester is to determine whether the current hypothesis is valid.
Conceptually, testing often involves two distinct subtasks: (1) simulation and (2)
comparison testing. Simulation is the process of examining the logical consequences of a
particular hypothesis with respect to a given knowledge base or model. Typically,
simulation is carried out by numerical modeling. The simulation result is subsequently
compared with, for fault isolation, to the actual behavior of the system.

One significant complicating factor in simulating the effect of the fault hypothesis
on the system behavior is that the form, size, and time of the failure all have an important
effect on system behavior. There are some failure detection and isolation algorithms which
can isolate failures without knowing specifically the behavior of the failed component or
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subsystem. However, most hypothesis testing algorithms must estimate this information,
search over some space of possible failure behavior, or some combination of these two. If
search is used to identify the failed behavior, the computational effort required may be
greatly increased. In this case, fault identification is basically required, which is much
more difficult.

It is frequently the case that no hypothesis satisfies the requirements of the
comparison test perfectly. This may be the result of imperfections in the simulation process
(modeling errors), noise in the environment, or of uncertainty in decision making. The
generate and test algorithm may terminate when the best hypothesis (i.e., the hypothesis
having the smallest associated error) is found, or when the error falls below a prescribed
threshold value. The quality of the decision process impacts the overall performance
(especially the accuracy) of the solver to a significant degree.

2.2.3.3  Benefits and Disadvantage.

The fundamental advantage of generate and test approaches is that they can be
powerful, using a model of the system to isolate faults for which there is limited or
nonexistent direct information. The result is fewer sensors and components required for
fault diagnosis. However, the generate and test procedure suffers from the primary
problems associated with all indirect problem solving techniques: uncertain convergence
characteristics, variable solution time, and some degree of arbitrariness. Present generate
and test algorithms, though, mitigate this somewhat by limiting the fault candidates to an a
priori enumerated set. Still, some algorithms need to estimate the failed behavior of the
component or subsystem or search over some space of possible failed behaviors (in
addition to searching over possible component failures) since faults usually have many
possible failed behaviors. In any case, the computational requirements for these
approaches are usually significantly greater than other isolation approaches.

2.3 Failure Management ‘

Failure management is the process of evaluating the effect of a previously detected
and isolated failure and then responding to the failure to recover some level of system
performance. The level of system performance possible is a function of the system
capability following a failure (which is in turn a function of the system redundancy). Very
generally, failure management can be considered to consist of the following steps:

(1) Given a description of the system's abnormal behavior and altered structure,
determine the system's current level of capability.

(2) Compare the current system capability with the prescribed system
performance objectives and alter the performance objectives as close as
possible to the original objectives but within the current system capability.
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(3) Determine and execute the sequence of response action which will minimize
the discrepancy between the present system performance and the modified
performance objectives.

At the present time, with few, if any, exceptions, failure management systems take the fault
isolation information and simply execute a predetermined sequence of response actions.
The first two steps and most of step 3 are performed in advance when the failure
management system was developed and are implicit in the transformation from isolation
information to response actions.

The response to a failure can be divided into two tasks: system reconfiguration and
recovery. Reconfiguration is the process of negating the failed element, so that it no longer
has any influence on the system behavior, reassigning the function of the failed element to
another redundant element or elements, and restoring the performance of the system. The
isolation and reassignment may be logical, in the sense that there are multiple sources for a
parameter and erroneous data emanating from the failed element is simply ignored; it may
be electrical, either by removing power from the failed element such that its outputs go to a
null state or by electrically switching in a replacement element; or it may be physical, in the
sense that the structure of elements are physically changed by a reconfiguration mechanism.
While these methods of reconfiguration are the most common, changing the software
controlling the system is often necessary to take advantage of other functional redundancy
or capabilities not normally used or to improve or restore the performance of the system.
One example is altering the control system to account for the changed system.

Recovery includes other actions taken to correct or minimize the effect of a failure in
lieu of or in addition to those taken to reconfigure the system. These actions are sometimes
required to

¢ shut down the system operation, when sufficient capability to perform is no longer
available, in such a manner that the system is not lost and the damage to the systen.
is minimized.

¢+ oppose the effect of the failure while reconfiguration is occurring.

o bring the state of the system back to a condition where the reconfigured system can
operate satisfactorily.

Recovery is not needed for aircraft actuators as they are required to be able to reconfigure
quickly so that a failure only causes a small transient. Therefore, the subsequent
discussion on failure management will concentrate on reconfiguration.
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SECTION 3

FAULT DIAGNOSIS AND FAILURE MANAGEMENT
IN DUAL-TANDEM HYDRAULIC ACTUATION SYSTEMS

3.1 Introduction

Three levels of real-time fault diagnosis and failure management (FDFM) capability
are possible on aircraft control surface actuators. The most basic capability (if any exists at
all) is simply to detect that the actuator has failed so that the pilot may be notified. The
benefit of notifying the pilot is that continued operation with a degraded vehicle may be
undesirable or prohibited. The next level of capability is to diagnosis certain component or
subsystem failures so that their effect can be neutralized by activating appropriate
reconfiguration devices. The objective of neutralizing the effect of a failure is to allow the
actuator and the aircraft to operate more efficiently and effectively. The most sophisticated
fault diagnosis and failure management capability is required for actuators which are fault
tolerant, i.e., capable of automatically adapting, in a well-defined manner, to failures of
their own elements so as to continuously maintain a specified level of system performance.
In this case, the FDFM performance requirements are demanding because even small
failure transients can have a significant effect on the aircraft. For example, on high-speed,
high-performance aircraft, transients which result in as little as 3 degrees of surface
movement may result in mission failure, if not aircraft loss (Reference 1).

Hydraulic actuators with fault tolerance capability are often differentiated based on
the level of redundancy associated with the power ram. The power ram is a mechanical
device which converts hydraulic pressure into a force that positions the control surface via a
connecting rod attached to the surface. The position of the surface is controlled by
directing the hydraulic fluid into ports or openings on either side of the piston or pistons of
the power ram (see Figure 3.1). A simplex actuator relies on only one hydraulic system
and piston in the power ram. While other parts of the actuator which control the hydraulic
fluid driving the power ram may be fault tolerant, a failure of either the hydraulic system or
the power ram would disable the actuator. Therefore, for actuators on flight critical control
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Figure 3.1. Power ram.

surfaces, power rams with two pistons in tandem where each piston is supplied with a
separate hydraulic system are used (see Figure 3.2). These actuators are referred to as dual
tandem actuators.

Dual tandem actuators have the greater fault tolerance capability and, therefore,
require the more sophisticated active fault diagnosis and failure management capability.
Therefore, this report focusses on the fault diagnosis and failure management of this class
of actuators. Nevertheless, the results of this study should be applicable to other
configurations to some extent.

Section 3.2 briefly reviews current operational and experimental high performance
dual tandem actuators. The following subsection examines the fault diagnosis and failure
management capability of these dual tandem aircraft actuators. This section provides a
basis for evaluating alternative approaches to actuator FDFM.

l ILIJI |

Figure 3.2. Dual tandem power ram.
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3.2  Dual Tandem Actuator Review

The dual tandem actuators examined for this study can be divided into three general
classes. The first class consists of actuators presently used in military aircraft. The other
two classes are simpler experimental and prototype designs. The actuators in these classes
differ in the manner in which the hydraulic flow to the power ram is controlled. Each of
the types of actuators are briefly described and compared. The additional components
required for fault diagnosis and system reconfiguration are discussed in the subsection on
FDFM capability.

3.2.1 Operational Dual Tandem Actuators

A configuration which is typical for dual tandem actuators is shown in Figure 3.3.
While current dual-tandem actuators may differ from this configuration in some manner, it
is sufficient to give a general understanding of these actuators. These actuators use three
stages to convert and amplify an electrical or mechanical input into controlled hydraulic
flow to the power ram. The first stage normally consists of three to four jet pipe or flapper
nozzle servovalves which convert the input to a differential pressure to drive the second
stage servovalve spool. The first two stages are often combined into a single unit called a
two-stage electrohydraulic servovalve (EHSV). With these devices, the spool position is
controlled by feedback (normally mechanical) of the spool position to the first stage. The
schematic and the operation of a two-stage EHSV is shown in Figure 3.4. The second
stage then meters hydraulic flow to modulating pistons or servo rams which in turn
position the dual main control valve (MCV). The second stage may alternatively position
the MCV mechanically. The MCV controls the hydraulic flow to the power ram. There is
closed-loop control of the power ram position which may be implemented mechanically, in
analog circuitry, or using digital processing. In the case of mechanical control, the linear
variable differential transformers (LVDTs) are replaced by linkages unless required fo.
other purposes.

3.2.2 Experimental and Prototype Designs

One experimental class of actuators consists of those systems which have
eliminated the MCV, using 2 to 4 two-stage EHSVs to control the hydraulic flow to the
power ram directly (see Figure 3.5).

The other class considered here is the direct drive actuator which uses electrical
motors to control the position of the MCYV directly (see Figure 3.6). These direct drive
actuators simplify the actuator design and eliminate the conventional two-stage amplifier
stage. These designs are suitable for high pressure application since the actuator
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The principal of operation is as follows:

Hydraulic fluid flows through the jet pipe to the first stage hydraulic amplifier.

The first stage amplifier consists of the transmitter orifice on the end of the jet pipe and the
two receiver orifices below the transmitter orifices, slightly off-set to the right and left.

With the jet pipe in the normal position and no electrical signals applied, the pressure and tlow
in both receiver orifices is equal and the second stage spool valve remains stationary.

By deflecting the jet pipe to the right or left, the pressure and flow relationship between the
right and left receiver orifices is changed, which results in a second stage valve spool
displacement and therefore a hydraulic flow command change to the actuator.

The jet pipe position is controlled by the force of the electromagnetic fields generated by the
valve drive currents in valve coils #1 and #2, the permanent magnets on the jet pipe
deflection bar and the mechanical feedback spring.

Figure 3.4. Principle of operation of electrohydraulic servovalve
(taken from Reference 9).
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Figure 3.6. A typical direct drive dual tandem actuator.

interleakage is significantly reduced with the elimination of the two-stage EHSVs. The
motivation for using higher hydraulic pressure is to reduce the size of the actuator which is
attractive given the thin wings of modern military aircraft.

3.2.3 Comparison of the Three Classes

The operational class of dual tandem actuators use more stages for amplification

This allows smaller first stage servovalves to be used which reduces the hydraulic power
loss associated with these devices. The benefit of an MCYV is that it isolates the effect of

load from the servovalves and produces better dynamic response (i.e., more stiffness).
The use of an MCV also results in better failure performance as the actuator does not lose
force output capability with loss of an EHSV, although it may still lose some bandwidth.

The removal of the MCYV in the first class of experimental designs simplifies the
actuator and eliminates another source of failures. However, this class requires more
powerful two-stage servovalves which results in a higher constant power loss and higher
failure transients. In addition, these actuators have lower chip shearing capability and
slower dynamic response.

Direct drive electrical motors used on the direct drive experimental actuators are
necessary with higher hydraulic pressure application as the constant hydraulic power loss
with standard EHSVs would be too high. Electric motors have become significantly more
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powerful since the development of motors using rare-earth metal, making this actuator
design feasible. Internal leakage around the piston becomes a more significant problem,
though, with the higher hydraulic pressure, and the dynamic performance is slower than
the other two classes.

3.3 Fault Diagnosis and Failure Management Capability

The fault diagnosis and failure management capability of these three classes of
actuators was determined by examining the FDFM system on six representative actuators:

e F-16 integrated servoactuator
o F-18 stabilator actuator
e V-22 swashplate actuator

» Digital integrated servoactuator controller (DISAC) actuator developed
by the Boeing Military Airplane Company and Moog Inc.

o Bell 4-valve (Bell-4V) actuator

¢ Dynamic Controls direct drive actuator developed for the Air Force
Flight Dynamics Laboratory

The F-16, the F-18, and the V-22 actuators are presently in use on recently developed
military aircraft. Presumably, they represent the best of actuators presently in use. The
Bell-4V and the DISAC actuators are of the experimental type which have eliminated the
MCYV. The Bell-4V actuator was developed for a flight test program while the DISAC
actuator is a prototype designed to test microprocessor-based control, fault diagnosis, and
failure management. The Dynamic Controls direct drive actuator is a proof-of-concept
prototype.

The FDFM capability of these actuators is first described in general. Then the
specific FDFM systems on the actuators is presented followed by a discussion of their
capability. Finally, some improvements for actuator FDFM systems are suggested.

3.3.1 Overview of Dual Tandem FDFM Capability

In general, FDFM for these actuators is based on the local isolation approach
described in Section 2.2.1. The actuator is conceptually disaggregated (i.e. broken up) into
component or subsystem elements for which there is a failure response. Then, failure
detection is performed on each individual element. When a failure detection test is
exceeded, a failure is isolated immediately to the monitored element. The important
assumption is that failures are detected before the effect of the failure propagates and causes
alarms in other detection tests. Alternatively, any downstream detection tests must allow
sufficient time for upstream component failures to be detected by their corresponding test.
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If the propagation of the effect of the failure is not handled properly, the failure may be
isolated to an incorrect component. Careful consideration of the effects of failure
propagation is important because, given this approach, information is not shared among
the detection tests. For each failure detection, there is a straightforward failure management
response which at best may contain some logic to account for other previous failures that
been detected and removed from operation.

The three approaches to failure detection used are self-test, direct redundancy, and
analytic redundancy. Briefly reviewing Section 2.1, self-test relies upon information that
can be obtained directly from or within an element itself to detect common or characteristic
failure modes. Direct redundancy compares the outputs of like components to detect and
isolate failures where analytic redundancy, as used in the case of actuators, compares the
output of a component to an analytic model.

There are passive and active failure responses used on these actuators. In the
passive case, the actuator is designed to handle the failure without explicit failure detection
and failure response by relying upon the redundancy designed into the system. Active
responses reconfigure the system to neutralize the effect of a failed component or
subsystem and, in some cases, to recover the original performance.

3.3.2 Specific Description of FDFM Systems

The F-16 actuator (References 10 and 11), shown in Figure 3.7, uses three two-
stage electrohydraulic servovalves to drive an MCV. In the normal mode of operation,
only two of the servovalves are used to drive the MCV with the third servovalve in an
active standby mode. The input to the servovalves is a function of the electrical command
and the mechanical feedback of the power ram and MCV spool positions (MCV spool
position feedback provides power ram rate feedback). There are current monitors on the
outputs of servoamplifiers which are directly compared to detect amplifier and servovalve
coil failures. If a failure is detected in either a servoamplifier or a coil, that command circuit
is replaced by a standby amplifier driving the secondary coil of the servovalve in the failed
circuit (if the standby amplifier is not the failed component). This part of the FDFM logic
is implemented in an analog computer with a switch providing the reconfiguration
capability. Servovalve failures are detected by hydraulic logic comparing the output
differential pressures of the first stages of the servovalves. The hydraulic voting spool
causes the MCV modulating piston control to switch to the standby servovalve if one of the
two primary servovalves has failed. If the standby servovalve fails, the two primary
servovalves are locked on. The final failure detection test used on the actuator is a
comparison of the actual actuator performance using a power ram position sensor and a
model of the actuator in the computer. The response to a failure detected with this test is to
activate two solenoid valves that allow the feedback centering spring to command the
actuator to zero position.
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The F-18 stabilator actuator (Reference 12) has four single stage EHSVs which are
paired to allow direct failure detection by comparing their output pressures using quad
differential pressure sensors on each pair of servovalves (see Figure 3.8). EHSYV failures
detected in this manner are contained by a solenoid valve which shuts off the hydraulic
supply to that pair of one-stage servovalves. Each one-stage EHSV has four coils with a
coil on one servovalve connected in series with a coil on the other servovalves. Each of the
four series of coils are driven by a separate amplifier. One of the four digital flight control
computers (FCC) is interfaced to one and only one amplifier, supplying the current
command to the amplifier-coil combination. With this flux-summing arrangement, the
inputs from the four amplifiers are effectively added. The current from each amplifier is
compared to a digital model of the amplifier to detect amplifier or coil failures. If a failure
is detected, that electrical channel is disabled. The actuator is able to meet the performance
specifications with two coil failures so no failure management is necessary. More than two
coil failures results in the hydraulic flow to both pairs of EHSV being shut off, allowing
the MCV to be controlled mechanically. Each pair of EHSVs drives one piston of a dual
tandem modulating piston design. The dual tandem modulating pistons is mechanically
linked to the MCV to control its position. (This design is motivated by the desire to
incorporate mechanical reversion capability) There are quad LVDTs on both the servo ram
and the power ram, which are used for control. Each LVDT is connected to one of the four
FCCs. Each FCC in tum, drives one of the servo amplifiers. Failures of these sensors or
the command from the FCC are detected both by the servoamplifier current failure detection
or by comparing the position of the servo ram with a model. Sensor detection by direct
comparison is not possible because the quadruplex digital FCC system does not allow any
cross channel communication. The loss of hydraulic power is negated by a
bypass/damping valve which equalizes the pressure on either side of the power ram
pistons, allowing the control surface to float.

The V-22 actuator (Reference 13) controls the MCV with two unbalanced
modulating pistons (see Figure 3.9). Two two-stage EHSVs drive one modulating (mod)
piston with the third two-stage EHSV driving the second mod piston which has half the
area of the first mod piston. The servovalves are commanded separately by the three
FCCs. The current driving the EHS Vs is measured and compared to a digital model in the
FCCs for servoamplifier and servovalve coil failure detection. EHSV failures are detected
using the position sensor on the second-stage spool of each servovalve for EHSV failure
detection. Failures of LVDTs including the triplex LVDTs on the MCV and the power ram
are detected using a self test approach since there is no cross channel comparison used in
this case either. The response to a failure of a servoamplifier, a servovalve coil, a
servovalve, or an LVDT is the same: activate the appropriate shutoff valve or bypass valve
to disable the hydraulic flow to the corresponding servovalve.
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Figure 3.8. F-18 stabilator actuator (taken from Reference 12).
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The Bell-4V actuator (References 14, 15 and 16), shown in Figures 3.10 and 3.11,
uses four two-stage flapper valve EHSVs to meter the hydraulic flow directly to the dual
tandem power ram. An open EHSV coil or drive wire failures are detected by comparing
the EHSYV current to a simple analog model. If a failure is detected, the particular EHSV is
disengaged using a solenoid valve. Other EHSV failures are detected by directly
comparing the position of the second stage spool of the four servovalves. Because the
Bell-4V is able to accept a hardover servovalve failure (the control system causes a bypass
around the piston with the failed servovalve channel), the detection thresholds are set so
that only large failures are detected. The advantage is reduced false alarms. If both
channels driving a piston have failed, a bypass valve is activated for that piston. The
FDFM system is implemented in analog logic.

The DISAC prototype actuator (Reference 17) was developed to be controlled and
managed by two microprocessors (see Figure 3.12). It differs from the Bell-4V actuator in
that only two EHSVs are used. In the primary operating mode, each microprocessor
controls one channel (i.e., EHSV and bypass valve). However, if a microprocessor failure
is detected using some self test, that microprocessor relinquishes control of its channel and
the other microprocessor controls both channels. To accomplish this design, both
microprocessors have access to the same information on each channel through the use of
duplicate sensors. One sensor interfaces to each microprocessor. In addition, both
microprocessors are able to operate each EHSV and bypass valve using separate coils in
each component. Logic exists to keep both microprocessors from attempting to control the
same component simultaneously. Failure detection on this actuator consists of comparing
the measured position of the second stage spools to fast and slow models of the EHSV to
detect EHSV failures. In addition, LVDT failures are detected using self test. The failure
management response could be either to neutralize the channel with the failed component or
allow the other microprocessor to take over operation of the channel. The precise
redundancy management logic is not detailed in Reference 15. One unique feature of this
actuator is the use of position switches on the bypass valve to verify its operation,
presumably during preflight testing. Bypass valves failing open is a latent failure as it
cannot be observed during normal operation. Preflight testing at least verifies its operation
occasionally.

The Dynamic Controls direct drive actuator (Reference 18), shown in Figure 3.13,
uses two servoamplifiers to provide current to each direct drive motor. Each amplifier
drives one of two coils in each motor. Servoamplifier failures are handled by using a
cross-strapping design that opposes the bad channel with the good channel. Failures in the
command inputs and the LVDT on the power ram are detected by comparing the feedback
error in two channels. The response is to disconnect the command from the motor with the
detected failure. An LVDT failure is opposed using the cross-strapping design again. The
FDFM requirements for direct drive actuators are less than the other actuators because the
motor fails in benign ways such that an active response to neutralize the failed is not
required.
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3.3.3 Actuator FDFM Examination

The FDFM systems on these six actuators are examined with respect to their ability
to diagnose and respond to various component failures, their performance, and their logic
implementation.

3.3.3.1 Component Failure Diagnosis and Management

The FDFM systems for the six actuators are summarized in Table 3.1. The FDFM
systems are generally able to detect and reconfigure the actuators for servovalve, electrical
and sensors failures. No reconfiguration capability in general exists to address failures of
the MCV and the power ram. The most likely common mode failure for the MCV and the
power ram is for them to jam; the upper stages driving the MCV or power ram are designed
with properly specified chip shearing force capability, overpowering the jam in most cases.
No reconfiguration capability exists for direct drive electrical motors either since their most
common failure modes are shorts or opens in their coils. The actuator is still able to operate
with these types of failures of the motors although the chip shearing capability and,
perhaps, the dynamic response will be degraded because of the reduced force capability of
the two motors.

Also generally not addressed are failures of the FDFM system itself, including the
implementation of the logic and the reconfiguration components. This is especially true for
FDFM logic implemented hydraulically or in analog circuitry as there is no redundancy in
these cases. If the hydraulic or analog logic fails, the result could either be to declare a
failure of some other component (incorrect isolation) or to detect no failure at all (missed
failure). The latter case allows the actuator to continue operation but creates the potential
situation where another failure occurs and the FDFM system is unable to respond to it,
perhaps causing the loss of the aircraft. In the first case, the operation of the actuator may
be degraded or shut off because of the failure response or responses chosen by the failed
FDFM logic. Unless unnecessary loss of the actuator is critical because of the mission
situation, this case is preferable since at least some failure is detected. The digital
implementations of the logic are more fault tolerant since the logic is distributed to more
than one processor.

Failures of reconfiguration components such as bypass and solenoid valves and
switches are, in some cases, impossible to detect. This is the case because they are on-off
devices. For example, if such a device which is normally off becomes stuck in that
position, the failure cannot be detected since the failure does not adversely affect the
operation of the system (i.e. a latent failure). When and if the component is commanded to
turn on or if the component fails to a different condition than it is being commanded, the
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failure can be detected. Since only one of the actuators studied provided backup or
redundant components for these devices (a backup coil on the DISAC actuator bypass
valves), they apparently are sufficiently reliable that FDFM is not required for these
components. Nevertheless, as suggested by the redundancy management on the DISAC
actuator, preflight testing of these devices would reduce the likelihood of flying with a
failed reconfiguration device of this type.

Some failures are handled using inherent capability within some actuators, requiring
no explicit FDFM system. For example, the Bell 4-valve and the F-18 actuators can
accommodate a hardover servovalve failure with only closed-loop control. With these
actuators, the control system will cause the other three servovalves to move to oppose the
failed servovalve. The result will be a force-fight situation with degraded, but acceptable,
performance. Similarly, the cross-strapping amplifier design on the Dynamic Controls
direct drive actuator simply offsets the effect of one amplifier failure with the opposite
current in the other amplifier. Force fighting is characteristic of many passive failure
responses. The advantage of this approach is no that FDFM logic or reconfiguration
devices are required. The disadvantage is that excess capability greater than normally
required is necessary, needing and using much more power than necessary. In addition,
force fighting will cause performance degradation and mechanical fatigue, increasing the
wear and tear on the system and the likelihood of subsequent failures. In addition, unless
the detection thresholds account for the effect of force fighting, false alarms will occur.

3.3.3.2 Implementation

The FDFM logic is implemented in three basic ways: hydromechanically (the F-16
actuator), in analog circuitry (the F-16, the Bell 4V, and the Dynamic Controls direct drive
actuators), and in digital software (the F-18, the V-22, and the DISAC actuators). In the
latter case, the digital logic can reside either in a central FCC or in a local microprocessui
There is a trend from hydromechanical and analog logic to digital logic. The disadvantages
of hydromechanical logic are the additional cost, power, size, weight, and hydraulic
complexity required. One implication is decreased maintainability. In addition, this logic
can only be used for direct redundancy failure detection, must be simple, and cannot be
modified without a major effort (i.e., little flexibility). Analog logic overcomes most of
these disadvantages. However, the FDFM capability possible is basically limited to self
test and direct redundancy approaches, although a limited analytic redundancy capability is
possible. Digital implementation of the FDFM system offers the potential for the best
FDFM capability since all of the detection approaches - self test, direct redundancy, and
analytic redundancy - can be easily and precisely implemented. In addition, the potential
for fine tuning of the FDFM logic exists. The benefits of using a local microprocessor
rather than relying on the central FCC are alleviating the system management burden of the
FCC, less cabling to the FCC, distributed processing allowing increased computational
capability for FDFM and other tasks, and better digital control (Reference 19). However,
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the impact of the local environment (e.g., heat, vibration, etc.) on the microprocessor is a
problem that is still being investigated (Reference 19).

While digital implementation of the FDFM system offers the greatest capability, all
of the digital FDFM designs above had limitations imposed on them by the design of the
fault tolerant computer system. In order to interface with the quad FCC system on the
F-18, all the electrical components and sensors were quad redundant, creating four
electrical channels. Each of the four redundant components or sensors interfaces with only
one FCC. No cross talking between systems was allowed, eliminating the most natural
approach of failure detection: direct comparison of the redundant components. The failure
response is to eliminate the entire electrical channel if any one component or sensor in the
channel fails. The V-22 system is similar to the F-18 except that a triplex FCC is used.
The DISAC actuator also has problems with using the redundancy available with their
"brickwall" design (i.e., no communication between the two local microprocessors). The
benefit is simpler FDFM computer architecture at the expense of more components and an
increased failure rate. However, reliable communication between computer channels may
not be possible without significantly increased complexity and decreased reliability.

3.3.3.3 FDFM Performance

The fault diagnosis performance for these FDFM systems is determined by the
performance of each individual detection test. The resulting performance is partially
determined by the type of detection test and the thresholds used. Self test, used to detect
microprocessor failures on the DISAC actuator and some LVDT failures, is only able to
detect certain specific failures. Normally, the direct and analytic redundancy approaches
result in better detection performance, since modeling the normal behavior of a component
or subsystem is generally easier, more accurate, and more comprehensive than modeling
the failed behavior. In practice, the thresholds set using direct and analytic redundancy are
large for actuator applications. Reference 18 states that thresholds for fly-by-wire actuators
are often set to 30 to 50% of the maximum level possible with a hardover failure. As a
result, only large failures are being detected with the other failures being compensated for
by the control system. Apparently, smaller thresholds are not possible without an
excessive false alarm rate. This may be true because of significant differences in the
dynamics of two components in the case of direct redundancy or because of significant
modeling errors in the case of analytic redundancy. Still, the fault diagnosis capability is
apparently adequate to detect component failures that would potentially cause loss of the
aircraft. No comments in the literature were noted about missing failures. Rather, the
problem appears to be the false alarm rate (References 2 and 3).
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3.3.4 Possible FDFM System Improvements

This survey of the literature and these actuator FDFM systems suggests three areas
of improvement that might be possible:

.

Reduced false alarm rate, References 2 and 3 suggest that the detection of
failures that cannot be duplicated by ground support personnel is one of the
leading causes of maintenance actions. The most likely cause for not being able
to duplicate the failure is that a false alarm occurred. Much less likely, but also
possible, are transient failure situations that are not repeatable on the ground.
Improving the rather simple fault diagnosis systems on actuators should
significantly reduce the false alarm rate, thereby reducing unnecessary
maintenance actions necessary.

More efficient FDEM design. There are several FDFM design practices that
tend to increase the need for maintenance and decrease the actuator reliability.
The first is simply to add one sensor to a component for improved fault
diagnosis. An example of this is the V-22 actuator LVDT on the servovalve
spool. In this case, using only direct or analytic redundancy for failure
detection, a sensor failure is indistinguishable from component failures in the
actuation system . Even if the sensor failure can be distinguished from the
failure of the associated component, detecting the subsequent failure of the
component after the sensor has failed would not be possible using local
isolation. The result is that good actuator components may be disengaged
whenever an associated sensor fails. Under these circumstances, adding a
sensor to a component will actually reduce the reliability of the system.
However, if other sensor information was used, detecting a component that is
not directly measured may be possible, for example, using analytic redundar.c-
This approach would be possible if the effect of the failure on the overall system
can be distinguished from other component failures.

A second design practice is to include excess capacity to overcome failures by
force fighting. While this passive FDFM approach may be the only possible
approach or the most efficient approach for some failures, several actuators
used this approach simply to reduce the need for active FDFM. In these cases,
the result is increased weight and power requirements. In addition, the rate of
component failures and the need for maintenance will be greater.

The FDFM systems could also be more efficient if better means of interfacing
with fault-tolerant computer systems were used. In existing systems, the loss
of one electrical component disables an entire electrical or electrohydraulic
channel. A better design would reduce the number of sensors required. These
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benefits may not be worth the additional computer architecture complexity,
however.

Control system reconfiguration. None of the actuators alter the control system

following a failure to improve the actuator performance. In addition to
performance recovery, control system reconfiguration might be one approach to
responding to failures of sensors needed for inner loop compensation. Inner
loop feedback improves the dynamic response of the actuator but it is not
absolutely necessary. Whether the resulting performance would be adequate
requires further investigation.
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SECTION 4

AN ASSESSMENT OF Al METHODOLOGIES
FOR
ACTUATOR FAULT DIAGNOSIS AND FAILURE MANAGEMENT

4.1  Introduction

Artificial Intelligence (AI) technology consists of broad classes of problem solving
techniques and software languages and programs designed to enhance the capability of
computers by incorporating some ability to reason in an manner analogous to humans.
Some attractive or desirable reasoning characteristics are knowledgeable decision-making,
flexibility, learning, and accommodation of incomplete or inexact data. However, the
reasoning capability of the Al problem solving techniques can vary significantly. An
example of very minimal reasoning capability is the compilation of human expert
knowledge into a program (i.e., "expert system"). This approach does not really differ
from the present use of heuristic rules except that the scope is greater. Other approaches
attempt to incorporate a greater understanding of the problem and process that knowledge
directly in solving the problem.

In assessing the use of Al for real time FDFM and, specifically, actuator FDFM,
the emphasis is on the alternative problem solving techniques associated with Al, rather
than the software languages and tools which have been developed to facilitate the
implementation of these techniques. While these software languages and tools, such as
LISP, PROLOG, and expert system shells, offer powerful new environments for program
development, they do not by themselves change the FDFM capability. These tools, of
course, may prompt the development of new problem solving techniques. Even so,
improved problem solving capability is the result of better solution methods, and not
necessarily due to the development tool or the software implementation used.

While the distinction between Al and conventional problem solving approaches to
FDFM is not always clear, Al methods in general tend to be characterized by qualitative or
approximate quantitative approaches to problem solving. One reason for this is that many
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Al methodologies attempt to imitate human reasoning which is often conceptual, symbolic,
qualitative, or quantitative but only in a very approximate manner (e.g., "back-of-the-
envelope"” methods). In contrast, conventional approaches, like analytic redundancy, are
formal quantitative approaches, developed based on some established mathematical analytic
theory. However, other conventional approaches, like self test and direct redundancy, are
very similar to some Al approaches in that they rely on heuristic or approximate quantitative
approaches.

This section assesses the potential usefulness of the alternate problem solving
techniques associated with Al for real-time actuator FDFM. First, a description of the
knowledge required for performing FDFM is presented. Then, the three general
characteristics which determine the performance of Al techniques are discussed. In Section
4.3, published approaches of Al for the general problem of FDFM are discussed and
evaluated for use in real time FDFM. Finally, the potential role of AI methodologies in
diagnosing and managing actuator faults is discussed.

4.2  Knowledge Discussion

Knowledge is fundamental to Al techniques. One manner of viewing Al problem
solving techniques is that they take information and use knowledge to process the
information with the product being a solution to the problem. Of course, even conventional
problem solving approaches can be viewed in this manner.

Consider each of the three separate tasks of FDFM - failure detection, fault
isolation, and failure management - from this viewpoint. As described in Section 2,
detection takes behavioral information about a system from the sensors and uses
knowledge in the form of a behavioral reference model, a comparison test, and a threshold
to produce a decision about the presence of a failure in the system (see Figure 4.1). Given
that a failure has been detected, the isolation task takes information about the abnormal
system behavior and determines the responsible component or subsystem failure (see
Figure 4.2). Isolation requires additional knowledge about how the components or
subsystems are interconnected, influence each other, and how they affect the behavior of
the system (i.e., a structural or causal description). Decision logic to differentiate between
the different possible failure candidates is also necessary. Finally, failure management
takes the description of the failed system, both behavioral and structural (i.e., which
component or subsystem has failed) information, and determines the sequence of response
actions to take (Figure 4.3). Behavioral and structural knowledge is necessary to assess
the new functional capability. In addition, knowledge about the present performance and
mission objectives is necessary so that the performance requirements can be modified to be
within the present capability.
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The knowledge incorporated in the FDFM system significantly determines the
performance of the system. Three aspects of knowledge that determine its effectiveness are
content, representation, and inference and control mechanisms. Knowledge content (i.e.,
what is known a priori plus what has been gathered in real-time) determines what is known
about the system being diagnosed. The representation scheme directly influences the way
in which knowledge can be manipulated and maintained. The inference and control
mechanisms determine how and what operations may be performed on the current
knowledge to yield new knowledge and to generate output responses.

4.2.1 Content

One characterization of knowledge content that is useful for the fault diagnosis and
failure management problem is the basis or source of the knowledge. Knowledge that is
derived directly from underlying process or system and mathematical or physical laws is
referred to by some artificial intelligence researchers as deep knowledge (Reference 20). In
contrast, surface (or shallow) knowledge is only indirectly based on the fundamental laws
pertaining to the problem domain. Empirical, experiential, or heuristic information usually
acts as the primary source for such knowledge. Of course, any given knowledge base may
contain a mixture of deep and surface knowledge.

One benefit of a deep knowledge base is that it is more likely to be internally
consistent and, therefore, the conclusions drawn from it tend to be logically valid. This is
true because the system and the problem are being studied systematically. Assuring the
consistency and completeness of a knowledge base developed using surface knowledge is
difficult, since it may only be valid in specific situations. Therefore, conclusions based on
such information are valid only under some conditions (and not generally true).

Surface knowledge must be used when formal (deep) knowledge is difficult or
expensive to develop or use. This may occur in areas where little theoretical work has been
done, or where expertise does not exist. Whenever there is a rigorous understanding in the
problem domain, though, an attempt should be made to exploit such information.

4.2.2 Knowledge Representation

The knowledge needed to solve a problem may be expressed in many different
forms. Even though each individual structure may contain the same amount of
information, not all representations are equivalent. Good representations facilitate problem-
solving (Reference 8). Qualities of good representation include explicit representation of all
significant features of the problem domain, suppression of unneeded or superfluous detail,
and ease of use. Determining a suitable representation is an important design issue in
developing an intelligent fault diagnosis and failure management system. Two issues
relating to knowledge representation are discussed below.
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4.2.2.1 Explicit and Implicit Representations

In the context of a specific problem, some representations will produce a solution
with less work, simply because the solution will manifest itself in a more explicit manner
(e.g., a look-up table is a more explicit representation of the solution than a rule-based
implementation of the same information). For other representations, the solution still exists
and may be elicited, but not necessarily by a straightforward or self-evident procedure.

Clearly, an explicit (with respect to a specific problem) representation is highly
desirable, simply because most of the work involved in solving a problem will already have
been done. However, it may be difficult to generate such a representation and a more
implicit one may have to suffice. In addition, an explicit representation may be suitable for
only a small class of problems such as diagnosing specific component or subsystem failure
modes. Implicit representations may be able to solve a wider variety of problems.

One difficulty with implicit representations is that the effort required to determine a
solution may be prohibitive in terms of computer and other resources. In addition, the
time-to-solution is, in most cases, unknown; however, determining an upper bound on the
time-to-solution may be possible. Both of these difficulties are especially important for
real-time fault diagnosis and failure management. Real-time problem solving requires the
ability to supply partial or approximate solutions at any time during the solution process, in
the event that no time remains for the complete or final result to be derived.

4.2.2.2 Quantitative and Qualitative Representations

Representations can either be quantitative or qualitative. Quantitative objects may
be expressed and manipulated numerically; the advantage being that there is a high degree
of resolution available and that this resolution is preserved (or at least well-defined) under
most mathematical operations. Qualitative objects are used to express conceptual entities
which lack or do not require the precision associated with quantitative objects. Rather than
saying the likelihood of failure is "0.85" on a scale of 0 to 1, we say that the likelihood of
failure is "high." Qualitative methods are useful in situations where the conclusions and
data can only be classified in a rough, unprecise manner. Under such circumstances,
qualitative techniques become the only means of proceeding.

4.2.3 Inference and Control

Inference is the process of transforming information implicitly contained within a
specified representation into a more explicit form. To do this, objects which are currently
explicit must be manipulated or combined with real-time information to uncover new facts.
Control mechanisms are procedures for directing and regulating inference. The
representation actually chosen is of critical importance and directly impacts the manner in
which reasoning (inference and control) will occur.
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4.3 Al Approaches of Fault Di i Fail n

There are numerous technical papers and articles which present artificial intelligence
approaches of fault diagnosis (see bibliography). To give some understanding how Al is
being used, five of the diagnostic systems or approaches are first described in some detail.
These specific systems and approaches are representative of the majority of the literature on
this subject. While the published approaches often appear to have significant differences,
there are two basic new problem-solving approaches which they bring to the FDFM
problem. These approaches are identified and discussed next. Finally, the approaches are
evaluated by examining how they have been applied in three different domains and
conclusions are presented regarding their applicability to real-time FDFM.

4.3.1 Five Illustrative Al Systems or Approaches

Five Al systems or approaches are summarized. For the systems presented, they
only use Al in part. Nevertheless, the entire system is described to help support some
conclusions about the potential for Al in the real-time aircraft FDFM problem. The systems
and approaches presented here were developed for three application areas: aircraft, chemical
or industrial processes, and digital electronics. As will be discussed later, the application
domain fundamentally affects the applicability of AI methods.

4.3.1.1 Rule-Based Fligh ntrol System

The Rule-Based Flight Control System (RBFCS), described in References 21 and
22, combines analytic redundancy and Al for the purpose of fault-tolerant flight control.
Failure accommodation is broken down into three major tasks: failure detection, failure
isolation, and reconfiguration. Failures are detected using residuals of a Kalman filter (i.e.,
using a model of the normal behavior of the system which, in this case, is a helicopter).

The failures are isolated in three phases consisting of (1) generation of the failure-
origin hypotheses, (2) generation of the failure-model hypotheses, and (3) testing of the
hypotheses by comparing failure-model results with actual failed behavior. Rules which
relate abnormal flight behavior to specific aircraft components are contained in a knowledge
base. The failure-origin hypotheses are generated by a forward-chaining search of this
knowledge base, resulting in a list of control surface and sensor failure candidates.

The RBFCS has a database of pre-determined failure-models (only bias and stuck
failure modes are considered in Reference 22). Guided by the failure-origin hypotheses,
the system selects a subset of these models to be used as likely failure-model candidates.
Specific numerical estimates of any apparent stuck surface positions or sensor biases are
computed at this time, based on rules developed from linear simulation runs. A buffer
containing a time-history of control commands, sensor measurements, and state estimates,
is used to initialize each model. Subsequently, each failure-model is run over the given
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(post failure) time-history; then the model which has the closest correspondence with the
actual measured behavior is chosen as the most appropriate new description of the actual
system dynamics.

Given an estimate of the dynamic model representing the failed aircraft, the
reconfiguration task suggests (in the form of a modified set of Kalman filter and linear
quadratic regulator gains) remedial changes to the control system. At this time,
compensation is provided for the effects of sensor biases and stuck surfaces. Some
failures may also require additional compensation to restore trim; heuristics and an analytic
method based on a weighted left pseudo-inverse operation are used for this purpose.

Unlike any of the other approaches examined, the RBFCS is a complete failure
diagnosis and reconfiguration system. However, many parts of the system are simplistic,
and would require substantial work before being ready for realistic implementation.

4.3.1.2 Onboard Aircraft Fault Diagnosis System

A general framework for fault monitoring and diagnosis is described in References
23 and 24 as well as an implementation of this framework for engine and hydraulic system
fault diagnosis. The diagnostic process is divided into stages, each having a different
reasoning strategy and conceptual representation. These stages are ordered according to
increasing computational and representational complexity. Successive stages are entered
only when prior stages are unsuccessful at diagnosing a given failure.

Detection is accomplished by comparing sensor data to the output of a model that
simulates the normal functioning of the physical system. A fault is declared whenever the
actual and expected signals fail to match to a sufficient degree. Heuristics are used to
identify normal conditions which the model is incapable of recognizing, thus reducing the
number of false alarms. The fault model then generates symptoms of the aberrant behavior
in a qualitative form (e.g., "fuel flow is high"). Additional information is also produced,
such as the time when the abnormality was first detected, or the dynamic behavior of an
output (e.g., "fuel flow is increasing” or "fuel flow is fluctuating™). This set of symptoms
becomes the input to the fault isolation system.

In the first stage of diagnosis, the qualitative symptoms are compared with fault-
symptom associations known a priori. These associations are a compilation of knowledge
about known faults and their behavior. This procedure corresponds to traditional rule-
based inference from symptoms (deviant behavior) to components (faulty structure). This
stage is attempted first since it will quickly identify the most commonly occurring faults.
However, an evaluation described in Reference 24 found that this stage, as presently
implemented, produced many false alarms. Some faults included in this stage could not be
clearly distinguish from other faults and therefore caused the false alarms.

The second stage of diagnosis occurs only if the first stage fails; that is, when the
current symptoms fail to correspond to a known fault hypothesis. (The implementation of
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the first stage also produced a diagnosis for every test case in Reference 24. As a result,
the second stage would seldom be used with this implementation.) The reasoning in the
second stage is based on a functional model of the underlying physical system. This
qualitative description is used to reason about other component failures that might produce
the observed symptoms. First a specific component failure is assumed, then the effects of
that failure are determined, and finally a check is made to see whether all of the observed
symptoms have been explained. Thus, the second stage solution approach is a form of the
generate and test procedure. The second stage worked fairly well according to the
evaluation in Reference 24.

Because not all parameters and behaviors are observable, and because of such
factors as system feedback, localization may not be possible without further information.
If this is indeed the case, a third stage is entered which proposes tests, of either an active or
passive nature, to obtain additional information. The ability to interactively test a
questionable subsystem may prove to be extremely useful in forming a conclusive and
unique diagnosis. However, the usefulness of this stage for aircraft diagnosis may be
limited; it is not described as part of the system in the latest of the references.

This system is an example of the layered approach. At the lowest levels, the most
likely or most obvious failures are considered first. If no conclusive results are produced at

this stage, then the current set of facts is passed on to the next level for more rigorous and
detailed analysis. In the event that no stage produces a final diagnosis, the monitored
system will be perturbed to provide additional information. Control is then passed back to
the first stage for renewed analysis.

4.3.1.3 The Method of Governing Equations

The Method of Governing Equations (References 25 and 26) diagnoses faults by
considering the material and energy balances, rate equations, equilibrium relations, etc.
(i.e., the governing equations) of a process. These equations provide a set of constraints
on the values of process variables, provided that the system behaves as expected.
Significant violations of these constraints are indicative of process faults. Thus, detection
is performed simply by checking whether the observed variables satisfy the constraint
equations, within some tolerance margin.

If a constraint is violated, then each of the variables "constrained" by that relation
becomes a candidate for further examination. Suspect variables may be exonerated if they
appear in separate unviolated constraints (assuming that a set of abnormal observed
variables will not happen to satisfy any constraint). Application of this principle results in a
reduced set of suspect variables. During the development of the diagnostic system each
fault is anticipated to affect one or more of the observed variables. These causal
relationships may be reversed to produce a set of candidate faults from the suspect
variables. Finally, each of these fault hypotheses is checked for consistency against the
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observed pattern of constraint violations. Any fault candidate which affects too many or
too few of the suspect variables is discarded. Assuming single failures only, the actual
fault will be the only one that is consistent with the observed pattern of constraint
violations.

The Method of Governing Equations, as described in References 25 and 26, seems
best suited to applications where there are little or no significant dynamics involved—
indeed, it seems most amenable for monitoring processes which operate in some steady-
state fashion. Under such circumstances, deviant behavior appears as a violation, by some
observed variable, of an admissible operating range.

4.3.1.4 Fault Analysis Consultant

The Fault Analysis Consultant (Falcon), as described in Reference 27, is an expert
system for on-line alarm analysis in power and process plants. Falcon reasons backwards
from observed behavior to possible causes and rates these fault candidates according to
how well they account for the observed behavior. The candidates with the highest rating
are chosen as the most likely causes of a fault. One advantage of this approach is that it
finds likely causes even when more than one fault is present.

In operation, Falcon is given a model of the process to be monitored and a list of
current sensor values for the observed variables. These quantities are converted to
qualitative values, indicating only whether they are OK, HIGH, or LOW. Falcon reasons
backwards from the observed data, with the help of a causal model, to identify all the faults
that might be used to explain the observed behavior. This set of component failure
candidates is then ordered according to some likelihood index. Falcon can also explain
why it believes each of these candidates is likely, based on the observed data.

The plant is modelled as a system of interconnected components. These
components are tied to each other by one or more variables, such as pressure, temperature,
and flow, that can be measured at the interface between two components. Inputs and
outputs are not explicitly labelled as such in the model, since the output of a component can
become an input, and vice versa, when a fault occurs (i.e., a failure of one system element
may effect other components upstream). For example, a short may alter an electrical
circuit, signficantly altering the structure of the circuit. Furthermore, it is assumed that
each component (pipe, pump, reactor vessel, etc.) is well-understood and can fail in known
ways. There are thus three kinds of objects in the plant model: components, variables and
failure modes.

The knowledge base contains data on all three types of objects. Stored with each
component is a text description, a list of its input and output variables, possible failures,
and disturbance propagation behavior. The propagation of failures through normally
operating components is modelled by rules which state how a deviation in one connecting
variable can cause deviations in other connecting variables. In addition, the rule-base
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contains special knowledge about when chains of reasoning must be broken to avoid
erroneous conclusions.

After the tracing phase (candidate generation) has concluded, Falcon rates the fault
hypotheses via fault simulation. Two numbers are computed for each hypothesis: (1) the
number of observed variables explainable by the hypothesis, and (2) the number of
observed variables inconsistent with the hypothesis. One hypothesis is more likely than
another if it explains more observed variables. Among hypotheses that explain the same
number of observed variables, a hypothesis is more likely if it is inconsistent with fewer
observed variables. In the event that multiple faults are present, several highly ranked
hypotheses will emerge from Falcon's analysis.

The process model used by Falcon is qualitative. So much information is lost by
classifying precise quantitative values as either HI, LO, or OK, that the effects of
interactions cannot be handled by simply combining the local relations into a model. Extra
meta-rules have to be added which prevent conflicts by taking precedence over other rules.

The basic disadvantage of the current version of Falcon is the assumption that the
monitored process is in a steady-state of operation. This is certainly not the case for many
processes, particularly during startup, shutdown, and transitions between operating points.
Some disturbances spread slowly through a process, disturbing observed variables at
different times. A causal model could include time delay information so that intelligent
diagnoses may be made while disturbances are propagating. Such temporal reasoning
capability might allow for more accurate diagnosis.

4.3.1.5 Diagnostic Reasoning Based on Structure and Behavior

The approach described in Reference 4 is intended to reason from first principles,
i.e., by directly applying knowledge of the structure and behavior of the subject of interest.
This system has been implemented and tested on several troubleshooting examples in the
domain of digital electronic circuits. Several advantages of this approach have been
identified, including a significant degree of device independence; the ability to constrain the
hypotheses it considers at the outset, yet deal with a progressively wider range of
problems; and the ability to deal with situations that are novel in the sense that their outward
manifestations may not have been previously encountered.

The basic strategy underlying this approach is firmly entrenched in the generate and
test algorithm. The main steps to be performed in a diagnosis are:

1. Candidate generation: preliminary candidates are selected by considering
the faulty behavior of the device. Knowledge of how behavior relates to
structure (causal knowledge) is used to perform this task.

2. Hypothesis testing: failure hypotheses are tested by checking their
ability to explain, in a consistent manner, the observed deviant behavior.
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3. Iteration: the first two steps are repeatedly applied until a failure
candidate is produced which satisfactorily accounts for the observed
fault behavior.

The monitored system is modelled as a network of nested sub-units, with the
lowest level components treated as "black boxes" which are governed by one or more
constraint relations. Faults are declared whenever the observed behavior differs
significantly from the expected constrained behavior. Fault candidate generation may be
achieved through constraint suspension; i.e., by choosing some constraint (component
behavior) whose retraction will leave the network in a consistent state. This approach leads
to a strategy for troubleshooting based on the methodical identification and relaxation of
underlying assumptions. Constraint suspension in conjunction with a nested representation
achieves two purposes: (1) it reduces the amount of information that needs to be considered
at any one time, and (2) it allows for virtually unlimited examination of a system in
increasingly greater detail.

One very interesting idea presented in Reference 4 proves to be useful in both
troubleshooting and in the selection of model representations: the concept of adjacency.
Devices interact because they are in some sense adjacent— electrically adjacent (wired
together), physically adjacent (hence "thermally connected”), electromagnetically adjacent
(not shielded), etc. It is postulated that faults can only occur within a component or
between components that are adjacent. Thus, each definition of adjacency can be used as
the basis for a unique model representation, having a distinct interpretation of what it means
to be adjacent. The multiplicity of possible representations helps to explain why some
faults are especially difficult to diagnose: they result from interactions between components
that are adjacent in a sense that is unusual or subtle.

4.3.2 Contributions of Al to FDFM

The Al research in the domain of FDFM, as can be seen from the above
descriptions, has concentrated on fault isolation rather than failure detection or fault
management. Failure detection is based on a quantitative model of normal behavior or a
threshold on observed variables, if addressed at all. Some approaches simply assume
failure detection. With regard to fault management, little has been done beyond the level of
simple reflex response actions. In contrast, fault isolation has received considerable
attention because the problem can be naturally posed as a search problem. Indirect or
iterative solutions are necessary since, in general, direct methods of fault isolation are
unavailable; the transformation of a behavioral description of a failed system into an
equivalent description of the structure of the failed system is difficult. This is
fundamentally the case because most physical systems are nonlinear and therefore the
behavior cannot be inverted to get structure.
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Al is particularly suited to solving this search problem since the search space,
consisting of all components and combinations of components which may fail, is finite and
discrete (Reference 8). Conventional search techniques which rely on the underlying
continuity and smoothness of the search-space cannot be applied to this domain. The
search procedure used by the Al diagnosis systems is essentially the generate and test
procedure described in Section 2.2.3. Given the system description and a set of
observations, fault candidates are generated and then tested simulating the behavior of the
system with that failure. A fault hypotheses is scored according to how well the simulated
behavior associated with that candidate compares with the actual observed behavior. The
most consistent hypothesis is chosen as the final result.

The generation of a candidate failed component or set of components could be done
simply based on a list of the components. However, this would require exhaustive search.
Instead, causal models, which qualitatively relate behavior to structure, are used to guide
the search process. The objective is to efficiently produce a small set of candidates that is
guaranteed to contain the actual fault using some form of causal knowledge. Fault
hypothesis testing requires knowledge that specifies some abnormal behavior for a given
faulty structure. Two kinds of models may be used to perform the fault simulation step: (1)
an analytic quantitative model of system behavior as in the RBFCS (Reference 22) and (2)
a qualitative model of system behavior as in Falcon (Reference 27).

Based on this discussion, Al fault isolation techniques can be seen to differ from
conventional approaches through the use of search through a causal model and, perhaps,
qualitative behavioral modeling. Causal models and qualitative behavioral modeling are
discussed further; the details of guiding search can vary widely and are beyond the level of
discussion here.

4.3.2.1 Causal Models

A causal model is a conceptual representation which explicitly describes structure
and the manner in which it influences behavior (Reference 4). Although, causal knowledge
relates structure with behavior, "cause with effect,” causal models are not designed to
describe the input-output behavior of a structure, as are behavioral models. Instead, causal
models describe the degree and manner in which elements of a system may influence the
behavior of other system elements. Note that causal models tend to be qualitative,
explicitly relating behavior to structure in a precise quantitative manner is difficult.

A simple causal model is shown schematically in Figure 4.4. The nodes all
represent devices which can fail (i.e., components or sensors). Links are meant to describe
the existence of an important causal relationship between the two specified node objects.
Several characteristics common to all causal models are implied by the diagram. Despite
the fact that no specific information has been provided regarding the nature of the causal

54



O COMPONENT @ SENSOR

——®  CAUSAL RELATIONSHIP

Figure 4.4. Simple causal model.

links in Figure 4.4, it is possible to infer a great deal about the propagation of abnormai
behavior in this model. If any node object has failed, the set of objects which may be
affected by this failure is easily computed. Such a computation makes use of forward
causal reasoning, in which inference follows the normal direction of causality (from cause
to effect). Alternatively, one may want to know what set of node objects might contribute
to the abnormal behavior which has been detected at a particular sensor. This involves
reasoning backwards through the causal model, from observed effects to underlying
causes. Typically, this set will contain more than one node object (and should contain the
original sensor as well). If other sensors have detected abnormal behavior as well, then
additional fault candidate sets may be generated as well. In those cases where no
behavioral discrepancy has been detected at a sensor, then one might reason backwards to
identify the set of components which should be working normally in order for the sensor to
observe no abnormality. Putting all of this information together, a diagnostic system can
employ both forward and backward causal reasoning to identify a subset of components,
any of which, failing singly, is capable of producing the observed behavioral
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discrepancies, and yet will not affect the behavior of those sensors which detected no
discrepancies. Multiple failures may also be considered. This final fault candidate set may
contain many node objects or no node objects which satisfy the constraints of the causal
model and the observed discrepancies.

Note that the causal links in Figure 4.4 might contain functional information which
can be used to further distinguish fault candidates and rule out some paths of causal
interaction which are based purely on connectivity.

To examine how a causal model might be used to reduce the number of component
failure candidates, consider the example in Figure 4.5. In this example, discrepancies
between observed and expected system behavior have been detected at sensors 3 and 4.

CANDIDATE COMPONENT DISCREPANT SENSOR

——>  CAUSAL RELATIONSHIP

Figure 4.5. Possible component failure candidates for the simple causal model
given observed discrepancies.
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The behavior observed at sensors 1 and 2 is normal. Fault propagation paths are implied
by the directed arrows of this causal model. Reasoning backwards to deduce which
components might have failed to produce the observed distribution of discrepancies, one
finds that only components 1, 2, 3, 4, 5, and 6 could have influenced sensors 3 and 4,
without also affecting sensors 1 and 2. Thus, only components 1, 2, 3, 4, 5, and 6 and
sensors 3 and 4 themselves, need be considered for further analysis. All other components
and sensors have been exonerated. Application of this simple causal model has helped
reduce the number of components (and sensors) under consideration from 15 to 8. If the
single fault hypothesis is also applied, then components 2, 3, 4, and 6 are exonerated as
well. This is because only components 1 and 5 are each individually capable of producing
the observed distribution of discrepancies. When the single fault hypothesis is used, the
number of fault candidates in this example becomes only 2: components 1 and 5. If either
Component 2, 3, 4, or 6 is determined to be faulty (based on other information), then
necessarily a multiple fault exists, since Component 1 or 5 or Sensor 3 must also have
failed.

Unfortunately, the presence of faults themselves can affect system causality. For
example, normal system operation between two components may be approximated well by
a casual link that is unilateral: the first component can influence the second but not vice
versa. However, the effect of the fault may be to alter the physical nature of the interaction
in such a way that the causal relationship can no longer be considered unilateral. In such an
event, reasoning based on the original normal causal model may be flawed. Another way
in which faults can violate modeled causality is when a single component fails and damages
other nearby components which are physically close, but otherwise unrelated (and hence
would not be included in the causal model). See Reference 24 for examples of this.
Reference 4 attempts to handle these concerns with the concept of "adjacency”. Still
another way in which a fault can affect system causality is by effectively severing a normal
causal link (e.g., an electrical open circuit or a severed linkage).

Causal knowledge may be represented explicitly using a number of methods:
connectivity models, fault trees, directed graphs, and rule-based causal models. Each of
these are now considered briefly.

Causal Connectivity. The simplest type of causal model merely describes the causal
connectivity within a system. The model consists of (1) the components of interest and (2)
a relation defined for every pair of components which describes whether or not the
components can influence one another. Frequently, only the most important or likely paths
of causal interaction are modelled. Causal connectivity models are usually based on purely
structural connectivity descriptions of systems, with the assumption that each physical
signal or power connection between components of a system is a possible path of causal
interaction.

In many cases, it may be difficult to describe the behavior and function of a system,
yet simple to describe the connectivity. Causal knowledge based on connectivity can be
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used to guide diagnosis even when the function or input-output behavior of a device is not
known. Because it is a relatively straightforward representation (and in fact may be
completely represented in a simple binary form), using connectivity to reason about
causality can be computationally efficient. As a result, it may be desirable to use
knowledge of connectivity to isolate a subset of candidates quickly, and then employ more
sophisticated methods (such as generate and test) to further isolate the fault.

Simple causal models based on structure only (as opposed to structure and
function), are qualitative and suffer from a certain lack of resolution due to multiplicity and
non-uniqueness in the causal model (Reference 26). In order to reduce the number of fault
candidates present at this stage, further reasoning based on function may be used. By
considering how the normal function of each component should affect its input-output
behavior, more fault candidates can be eliminated.

Fault Trees. One traditional approach used for fault isolation is based on the fault
tree. A fault tree is a graphical representation which relates "top-level” behavioral events
(observable symptoms) with logical combinations of the "primary" events required to cause
the top-level events to occur. The primary events include generic hardware failures, human
error, or environmental conditions. Examples of different fault tree methods may be found
in References 28 - 32.

Fault trees are based on a cause/consequence representation of the system.
Beginning with the top-level event, reasoning proceeds backwards towards the primary
events. Conceptually, this approach is not very different from the diagnostic procedure
outlined previously for structural connectivity. The main differences are: (1) the
representation chosen, (2) the inference procedure defined for the representation, and (3)
the information contained in the representation. Since (1) and (2) are really only
implementation issues, the only essential difference between the approaches is in the causal
information contained in the model.

Directed Graphs. The structural connectivity and fault tree approaches are
encompassed by more general representations known collectively as directed graphs.
Directed graphs are a knowledge representation framework which consists of a set of
objects (the nodes) and a set of relations between the objects (the links). Directed graphs
may be used to explicitly describe the structure and causal interactions of a system (see for
instance, References 28, 33-35). Directed graphs with nodes representing the state
variables of a system and links representing the dynamic causal relations between variables,
have also been used for fault diagnosis (e.g., References 21 and 36).

The degenerate case of a directed graph representation is simply the causal
connectivity model shown previously in Figure 4.4. Directed graphs may contain special
information pertaining to the nature of individual causal interactions. For example,
information related to the likelihood of fault propagation or the approximate fault
propagation time may be associated with each causal link. Such information is used in
more sophisticated backward reasoning methods. The advantage of additional causal
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information is obvious: more informed decision-making can be brought to bear during
backward reasoning, allowing for greater distinguishing capability. The end result is that
fault candidate generation proceeds under better guidance; a larger number of candidates
may be eliminated at each step, so that overall the generate and test process is more
efficient.

Expert Systems. Causal models can also be easily represented using expert system
software such as rule- or frame-based systems. An alternative method of causal modeling
is to use expert knowledge. While the causal modeling may not be explicitly stated, it is
implicit in the heuristics generated by an expert or experts. The difficulty with expert
knowledge is validating its consistency.

It is possible to invert causal knowledge expressed as rules, by using backward
chaining (which involves some degree of search). Because it is relatively natural for a
person to think in terms of forward causality (from cause to effect) and because production
rules are easily written in this form, it is not difficult to produce a diagnostic system which
is built around a rule-based causal model. Examples of this type of system are the systems
in References 37 - 39. Unfortunately, these systems tend to be little more than automated
versions of the knowledge represented in repair manuals or fault trees. There is clearly
some benefit (in terms of speed, flexibility, verification, etc.) to this automation, but no
novel contributions have been made in terms of modeling the causality of a system or
isolating faults.

4.3.2.2 Qualitative Behavioral Modeling

Some AI approaches also differ from conventional fault diagnosis techniques in that
the behavior of the system is qualitatively determined. Two approaches of qualitatively
determining the behavior of a system are (1) propagation through a causal model using
component qualitative behavior and (2) qualitative simulation. In the first case, typically,
simple heuristics are used to describe the component's output for given inputs. Falcon
(Reference 27) and the system in Reference 40 are two systems which use this approach.

Qualitative simulation is a technique for representing systems and inferring system
behavior in a formal, yet imprecise, manner, based on a description of component behavior
or a mathematical model. Qualitative simulation is guaranteed to produce every possible
(qualitatively different) behavior; unfortunately it may also produce spurious behaviors as
well. There are a number of reasons for choosing this method over classical quantitative
simulation techniques (References 41 - 43):

¢ Precise quantitative information about a particular system or phenomenon may not
be available. Limited information may be unusable unless qualitative methods are
employed.

s Quantitative simulation may be computationally intensive, whereas qualitative
simulation is normally very efficient.
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¢ Quantitative representations tend to obscure the underlying structure of a system
and consequently may not be readily used to infer the state of individual
components.

A number of criticisms of qualitative simulation have been discussed by References 41 and
42. To ensure that a genuine behavior is produced, the underlying structural model used
for simulation must be known to be consistent; when several possible behaviors are
produced, further analysis is required to remove spurious ones (Reference 41). Although
qualitative simulation can predict that certain qualitative behavioral transitions (such as
maxima, minima, or zero-crossings) will occur in a specified sequence, it cannot associate
a magnitude with such events nor can it place them absolutely in time — only the order of
such events is determined.

4.3.3 Evaluation of the AI Technigues

The types of systems to which these AI problem-solving techniques might be
applicable can be inferred in part by the characteristics of the systems to which they have
already been applied. Three application areas are considered: chemical or industrial
processes, digital electronics, and aircraft.

4.3.3.1 Chemical and Industrial Processes

Chemical and industrial processes are typically nonlinear, difficult-to-model
systems. Plant operation is characterized by steady operation at setpoints and transitions
between setpoints. The time constants associated with setpoint transitions and process
disturbances can be relatively large (especially for chemical processing plants);
consequently, the propagation of abnormal behavior through the system cannot be
considered instantaneous. Diagnosis is used in this domain as a means of implementing
simple automatic safety features, or more generally, as a means of augmenting the
supervisory control function.

Traditionally, failure detection is based on range-checking with fixed threshold
alarms; isolation is achieved through the use of fault trees; and fault management consists
of explanation and simple safety reflex actions. The purpose of Al process control
diagnosing systems is to reduce the multiplicity of alarms presented to the plant operators
as a result of the propagation of abnormal behavior. This is accomplished by reasoning
backward from the multiple alarm indicators to a smaller number of actual sources, based
on a causal model which includes likely fault propagation paths. The failure source or
sources are determined by propagating or simulating the effect of the candidate failures in a
qualitative manner and selecting those failures which best account for the alarms.

Causal reasoning is used because chemical and industrial processes are large
systems with many possible causes of failure. The qualitative simulation of the effect of



the failure is used because of the system's slow dynamic nature and the large effort that
would be required to model the behavior of the systems more precisely.

4.3.3.2 Digital Electronics

Diagnosis in the domain of digital electronics generally involves troubleshooting
systems which can be modeled exceptionally well. The difficulty of diagnosis in this
domain is the relatively large number of fault sources which are considered (generally, all
components and combinations of components). As a result, diagnosis in this area has been
treated as a search problem of a causal model of the system. Causal knowledge is used to
guide the search process. The problem differs from process control in that active testing is
allowed. The design objective of many approaches is to incrementally diagnose (i.e.,
sensor information is added incrementally) the faulty system using a minimum number of
active tests (which are selected by the diagnostic algorithm).

4.3.3.3 Aircraft Systems

Most of the Al applications to aircraft are for hydraulic and mechanical subsystems.
Reference 37 uses fault trees to perform off-line diagnosis of an actuator, References 38
and 44 use causal models to diagnosis hydraulic and power train failures respectively. The
Onboard Aircraft Fault Diagnosis System, discussed earlier, uses causal models to isolate
hydraulic and engine failures. These diagnostic systems are very similar to those in the
previous two subsections although the dynamics of the application subsystems may be
faster than processing plants.

The only application similar to that of a real-time actuator FDFM system is the Rule-
Based Flight Control System (RBFCS) described above. The purpose of the RBFCS is to
detect and isolate aircraft sensor and actuator failures and to reconfigure the control syster
to accommodate these failures. Aircraft are characterized by dynamic, relatively linear,
behavior and small time constants. As a result, quantitative simulation using aircraft
normal and failed model description were used for failure detection and testing of the
candidate hypotheses. Causal models were used to assist in the generation of the failure
candidates.

4.3.4 Applicability of Al to FDFM

The following conclusions regarding the applicability of Al to real-time FDFM are
based on this review of artificial intelligence approaches to fault diagnosis and failure
management.

(1) Existing artificial intelligence approaches to fault diagnosis seem best suited for
systems which normally operate in a steady-state rather than a dynamic mode.
Fewer simplifying assumptions can be made when considering general dynamic
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behavior versus steady-state operation. In dynamic systems, "normal” transient
behavior must be distinguished from faulty behavior. Thus, modeling will be
more difficult in the dynamic case, as will be failure detection and isolation. There
are many approaches for diagnosing failures in steady-state systems; there are
very few for diagnosing failures in dynamic systems— and those that exist tend to
be analytic in nature. Detecting and isolating failures in dynamic systems
frequently requires precision; qualitative descriptions are unable to provide this
precision as well as quantitative analytic techniques.

While this conclusion applies most obviously to qualitative behavioral modeling,
causal modeling is also more difficult for highly coupled, fast dynamic systems as
the effects of the failure may propagate quickly throughout the system.
Significantly reducing the search space with causal reasoning will be difficult

(2) Searching through a causal model is best suited for systems which have a large
number of elements (components or subsystems) to which diagnosis is required.
Explicit search is not necessary with a small number of components, a large
sensor-component ratio, and the local isolation approach used.

(3) The problem of isolating failures in real-time for critical components has not been
addressed at all, except by the RBFCS. Instead, the emphasis is on off-line
troubleshooting. The difficulties with using search or an iterative solution
technique are uncertain convergence characteristics, variable solution time, and
some degree of arbitrariness. These characteristics result in significant questions
about the applicability of searching through a causal system for real-time critical
operation.

4.4  The Potential Role of Al in Diagnosing and Managing Actuator Faults

The AI approaches to fault diagnosis discussed above do not appear to have much
potential for application to the actuator FDFM problem. For failure detection, the only Al
approach that could possibly be applicable would be to model the behavior of the system
qualitatively. However, qualitative behavior modeling would not be adequate for fast
dynamic systems, lacking precise to differentiate between the normal and failed behavior of
those systems. This conclusion is supported by need to detect, isolate, and respond to a
failure of any significance in approximately 0.1 seconds without much of a transient in the
position of the control surface (Reference 18). The failure must be detected in the midst of
significant dynamic behavior.

The AI approaches to isolation are based on the indirect solution process of
"generate and test.” While these approaches may have potential for large complex systems,
there are only a limited number of components to be considered in actuator diagnosis. In
addition, an actuator is typically well instrumented; this relatively high sensor-to-
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component ratio helps to quickly focus the search for the failed component. The search for
the failed component can be easily and explicitly described for an actuator, negating the
need for use of these Al approaches.

While the surveyed Al approaches do not appear useful for actuator FDFM, there
are three uses of AI which may be of benefit: (1) augmentation of conventional techniques;
(2) accommodation and management of uncertainty; and (3) the development and
maintenance of the diagnostic system software.

4.4.1 Augmentation of Conventional Techniques

For the specific problem of actuator fault diagnosis, artificial intelligence technology
should be used to augment rather than displace conventional diagnostic methods. Existing
techniques such as direct redundancy, analytic model-based algorithms, and self test are
well suited for actuator component failure detection. However, these techniques have their
limitations. Self tests can detect only certain types of failures. Direct redundancy requires
hardware replication which is expensive. In addition, if there are significant variations in
the performance of duplicate components, failure detection performance will be degraded.
Analytic redundancy requires accurate models which, for an actuator, may be difficult to
develop and computationally costly to implement.

Conventional techniques may be augmented either directly or in parallel. In the first
case, qualitative knowledge could be used to improve the conventional test. One example
of this might be to incorporating heuristics with an analytic model-based test to reason
about modeling errors or to handle special cases (Reference 24). The benefit might be
reduced model complexity or reduced false alarms. In the parallel case, qualitative
information and knowledge could used with another test to help confirm the result of the
conventional test. An example of a qualitative test would be to check to see if the power
ram piston is moving towards the commanded position if the error has remained large for a
period of time.

4.4.2 Accommodation and Management of Uncertainty

A decision-making system such as an actuator FDFM system must be able to
accommodate and manage uncertainty; it must have some appreciation of the accuracy and
applicability of the information and knowledge it uses. Uncertainty may exist in a variety
of forms and be associated with each of the following:

* apriori assumptions about the problem domain
» knowledge-bases (analytic or qualitative models, rule-bases, etc.)

* real-time information (observations from sensors)
* meta-rules and heuristics (rules for combining evidence, restricting search,
resolving conflicts, etc.)
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An important first-step in the accommodation and management of uncertainty
requires that it be explicitly represented. Measures of certainty or belief can be be
automatically manipulated and maintained during calculations and inference processes.
Once a means of expressing the uncertainty associated with each element of the knowledge-
base exists, then active steps may be taken to monitor and reduce it.

There are conventional approaches to modeling and making decisions in the
presence of uncertainty, none of which are used presently on actuators. However, they
require a quantitative model of the uncertainty in the system (e.g., a stochastic process).
Except for a few components like sensors, the availability of quantitative models of
uncertainty, especially model uncertainty, is questionable; qualitatively describing the
uncertainty in the decision tests and in the diagnostic decision-making process appears to be
more likely. A variety of Al-based techniques exist for reasoning (i.e., making decisions)
in an uncertain environment. These include certainty factors, probabilistic logic, fuzzy
logic, Dempster-Shafer theory, etc. These approaches differ primarily in (1) the way in
which uncertainty is represented and (2) the manner in which evidence from multiple
sources is combined.

Another approach to reducing uncertainty in the decision making process is through
the use of redundant information and knowledge (i.e., supporting evidence). Using
multiple detection tests for the same component is one possible source of redundant
information. Reference 45 suggests that a low false alarm rate may be possible even with
modeling errors as high as 30% by using redundant tests. Alternatively, some qualitative
knowledge or information such as the direction in which a servovalve spool is moving may
be useful. When using qualitative and quantitative information and knowledge from a
variety of sources with differing informational quality and precision, flexible mechanisms
for combining and integrating the individual results are required. An example of such a
mechanism is a meta-rule for combining intermediate results of differing quality and
precision.

4.4.3 Diagnostic System Development

During the design and development of a diagnostic system, artificial intelligence
technology can be particularly useful for the conceptualization of the problem and its
solution. In particular, Al provides a convenient environment for software development
and testing. Al programming tools are typically "user friendly," easily modified, and often
come with an assortment of debugging tools. In addition, some of the Al software
packages support linking to other programs written in other languages, facilitating the
development of a diagnostic system which combines both qualitative and quantitative
knowledge and information.



4.5  Conclusions

Artificial intelligence technology is beginning to find found extensive application in
the area of automated diagnosis. However, the fast dynamics and significant
instrumentation which are characteristic of actuators limits the applicability the Al
approaches to fault diagnosis. However, qualitative knowledge and representations and
heuristics may be useful in two ways:

(1) To augment conventional approaches such as model-based quantitative methods
and self-test. This conclusion is especially true if the system is poorly modeled
such that the performance of model-based analytic approaches is limited.

(2) To improve the higher level decision-making processes associated with
diagnostics and failure management. Higher level decision making is largely a
qualitative task and therefore can be better expressed in that manner.

Qualitative and imprecise quantitative knowledge, especially in the form of heuristics, have
been used from the outset in systems such as control systems and fault diagnostic and
failure management systems. Artificial intelligence, in part, has simply recognized that the
systematic use of qualitative knowledge is useful in particular situations and therefore has
created frameworks to facilitate the use of such knowledge. These frameworks are
sufficiently general to include quantitative knowledge and approaches and to integrate
knowledge and information from both qualitative and quantitative sources. While our
conclusion is that qualitative knowledge and approaches will be useful in the context of
intelligent actuator fault diagnostic and failure management systems, the extent to which
this is true can only be determined by developing a system for a specific example.

Another benefit of using artificial intelligence is that there exist powerful
environments which can facilitate software development and testing. As discussed above,
even systems that rely on analytic, quantitative approaches contain some heuristics or
expert knowledge. If more of such knowledge and o